Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros










Intervalo de año de publicación
1.
PLoS Genet ; 20(3): e1011196, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466721

RESUMEN

Hematophagous mosquitoes require vertebrate blood for their reproductive cycles, making them effective vectors for transmitting dangerous human diseases. Thus, high-intensity metabolism is needed to support reproductive events of female mosquitoes. However, the regulatory mechanism linking metabolism and reproduction in mosquitoes remains largely unclear. In this study, we found that the expression of estrogen-related receptor (ERR), a nuclear receptor, is activated by the direct binding of 20-hydroxyecdysone (20E) and ecdysone receptor (EcR) to the ecdysone response element (EcRE) in the ERR promoter region during the gonadotropic cycle of Aedes aegypti (named AaERR). RNA interference (RNAi) of AaERR in female mosquitoes led to delayed development of ovaries. mRNA abundance of genes encoding key enzymes involved in carbohydrate metabolism (CM)-glucose-6-phosphate isomerase (GPI) and pyruvate kinase (PYK)-was significantly decreased in AaERR knockdown mosquitoes, while the levels of metabolites, such as glycogen, glucose, and trehalose, were elevated. The expression of fatty acid synthase (FAS) was notably downregulated, and lipid accumulation was reduced in response to AaERR depletion. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSA) determined that AaERR directly activated the expression of metabolic genes, such as GPI, PYK, and FAS, by binding to the corresponding AaERR-responsive motif in the promoter region of these genes. Our results have revealed an important role of AaERR in the regulation of metabolism during mosquito reproduction and offer a novel target for mosquito control.


Asunto(s)
Aedes , Receptores de Esteroides , Animales , Femenino , Humanos , Aedes/genética , Aedes/metabolismo , Ecdisona/metabolismo , Mosquitos Vectores/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Homeostasis/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
2.
Nat Commun ; 15(1): 106, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168045

RESUMEN

Aedes aegypti are vectors for several arboviruses infecting hundreds of millions of people annually. Controlling mosquito populations by regulating their reproduction is a potential strategy to minimize viral transmission in the absence of effective antiviral therapies or vaccines. Here, we demonstrate that leucine aminopeptidase1 (LAP1), detected by a SWATH-MS-based proteomic screen of female spermathecae, is a crucial determinant in mosquito population expansion. Mitochondrial defects and aberrant autophagy of sperm in LAP1 mutant males (LAP1-/-), prepared using CRISPR/Cas9 system, result in a reduction of reproduction in wild-type females that mated with them. The fitness of LAP1-/- males is strong enough to efficiently transmit genetic changes to mosquito populations through a low number of hatchable offspring. Thus, LAP1-/- males represent an opportunity to suppress mosquito populations and further studies should be undertaken to characterize LAP1's suitability for gene drive usage.


Asunto(s)
Aedes , Animales , Masculino , Humanos , Femenino , Leucina , Proteómica , Mosquitos Vectores , Semen
3.
Proc Natl Acad Sci U S A ; 120(34): e2303234120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579141

RESUMEN

Aedes aegypti female mosquitoes require vertebrate blood for their egg production and consequently they become vectors of devastating human diseases. Amino acids (AAs) and nutrients originating from a blood meal activate vitellogenesis and fuel embryo development of anautogenous mosquitoes. Insulin-like peptides (ILPs) are indispensable in reproducing female mosquitoes, regulating glycogen and lipid metabolism, and other essential functions. However, how ILPs coordinate their action in response to the AA influx in mosquito reproduction was unknown. We report here that the AA/Target of Rapamycin (TOR) signaling pathway regulates ILPs through GATA transcription factors (TFs). AA infusion combined with RNA-interference TOR silencing of revealed their differential action on ILPs, elevating circulating levels of several ILPs but inhibiting others, in the female mosquito. Experiments involving isoform-specific CRISPR-Cas9 genomic editing and chromatin immunoprecipitation assays showed that the expression of ilp4, ilp6, and ilp7 genes was inhibited by the GATA repressor (GATAr) isoform in response to low AA-TOR signaling, while the expression of ilp1, ilp2, ilp3, ilp5, and ilp8 genes was activated by the GATA activator isoform after a blood meal in response to the increased AA-TOR signaling. FoxO, a downstream TF in the insulin pathway, was involved in the TOR-GATAr-mediated repression of ilp4, ilp6, and ilp7 genes. This work uncovered how AA/TOR signaling controls the ILP pathway in modulation of metabolic requirements of reproducing female mosquitoes.


Asunto(s)
Aedes , Animales , Femenino , Humanos , Aedes/metabolismo , Insulina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Aminoácidos/metabolismo , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Mosquitos Vectores/genética , Transducción de Señal , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
4.
Microbiol Spectr ; 11(1): e0312322, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36537797

RESUMEN

The Aedes aegypti mosquito transmits devastating flaviviruses, such as Zika, dengue, and yellow fever viruses. For more effective control of the vector, the pathogenicity of Beauveria bassiana, a fungus commonly used for biological control of pest insects, may be enhanced based on in-depth knowledge of molecular interactions between the pathogen and its host. Here, we identified a mechanism employed by B. bassiana, which efficiently blocks the Ae. aegypti antifungal immune response by a protease that contains an ovarian tumor (OTU) domain. RNA-sequencing analysis showed that the depletion of OTU7B significantly upregulates the mRNA level of immunity-related genes after a challenge of the fungus. CRISPR-Cas9 knockout of OTU7B conferred a higher resistance of mosquitoes to the fungus B. bassiana. OTU7B suppressed activation of the immune response by preventing nuclear translocation of the NF-κB transcription factor Rel1, a mosquito orthologue of Drosophila Dorsal. Further studies identified tumor necrosis factor receptor-associated factor 4 (TRAF4) as an interacting protein of OTU7B. TRAF4-deficient mosquitoes were more sensitive to fungal infection, indicating TRAF4 to be the adaptor protein that activates the Toll pathway. TRAF4 is K63-link polyubiquitinated at K338 residue upon immune challenge. However, OTU7B inhibited the immune signaling by enzymatically removing the polyubiquitin chains of mosquito TRAF4. Thus, this study has uncovered a novel mechanism of fungal action against the host innate immunity, providing a platform for further improvement of fungal pathogen effectiveness. IMPORTANCE Insects use innate immunity to defend against microbial infection. The Toll pathway is a major immune signaling pathway that is associated with the antifungal immune response in mosquitoes. Our study identified a fungal-induced deubiquitinase, OTU7B, which, when knocked out, promotes the translocation of the NF-κB factor Rel1 into the nucleus and confers enhanced resistance to fungal infection. We further found the counterpart of OTU7B, TRAF4, which is a component of the Toll pathway and acts as an adaptor protein. OTU7B enzymatically removes K63-linked polyubiquitin chains from TRAF4. The immune response is suppressed, and mosquitoes become much more sensitive to the Beauveria bassiana infection. Our findings reveal a novel mechanism of fungal action against the host innate immunity.


Asunto(s)
Aedes , Beauveria , Micosis , Animales , Aedes/genética , Aedes/inmunología , Aedes/microbiología , Beauveria/genética , Beauveria/metabolismo , Beauveria/patogenicidad , Inmunidad , Mosquitos Vectores/genética , FN-kappa B/metabolismo , Poliubiquitina/metabolismo , Factor 4 Asociado a Receptor de TNF/metabolismo , Virus Zika , Virus del Dengue , Virus de la Fiebre Amarilla , Infecciones por Flavivirus/prevención & control
5.
PLoS Pathog ; 18(9): e1010837, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36137163

RESUMEN

The balance between immunity and reproduction is essential for many key physiological functions. We report that to maintain an optimal fertility, 20-hydroxyecdysone (20E) and the ecdysone receptor (EcR) downregulate the immune deficiency (IMD) pathway during the post blood meal phase (PBM) of the Aedes aegypti reproductive cycle. RNA interference-mediated depletion of EcR elicited an increased expression of the IMD pathway components, and these mosquitoes were more resistant to infection by Gram-negative bacteria. Moreover, 20E and EcR recruit Pirk-like, the mosquito ortholog of Drosophila melanogaster Pirk. CRISPR-Cas9 knockout of Pirk-like has shown that it represses the IMD pathway by interfering with IMD-mediated formation of amyloid aggregates. 20E and EcR disruption of the amyloid formation is pivotal for maintaining normal yolk protein production and fertility. Additionally, 20E and its receptor EcR directly induce Pirk-like to interfere with cRHIM-mediated formation of amyloid. Our study highlights the vital role of 20E in governing the trade-off between immunity and reproduction. Pirk-like might be a potential target for new methods to control mosquito reproduction and pathogen transmission.


Asunto(s)
Aedes , Receptores de Esteroides , Aedes/metabolismo , Animales , Drosophila melanogaster/metabolismo , Ecdisona , Ecdisterona/genética , Proteínas del Huevo/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Receptores de Esteroides/genética , Reproducción
6.
Proc Natl Acad Sci U S A ; 119(11): e2116787119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35254892

RESUMEN

SignificanceHematophagous Aedes aegypti mosquitoes spread devastating viral diseases. Upon blood feeding, a steroid hormone, 20-hydroxyecdysone (20E), initiates a reproductive program during which thousands of genes are differentially expressed. While 20E-mediated gene activation is well known, repressive action by this hormone remains poorly understood. Using bioinformatics and molecular biological approaches, we have identified the mechanisms of 20E-dependent direct and indirect transcriptional repression by the ecdysone receptor (EcR). While indirect repression involves E74, EcR binds to an ecdysone response element different from those utilized in 20E-mediated gene activation to exert direct repressive action. Moreover, liganded EcR recruits a corepressor Mi2, initiating chromatin compaction. This study advances our understanding of the 20E-EcR repression mechanism and could lead to improved vector control approaches.


Asunto(s)
Ecdisona/metabolismo , Regulación de la Expresión Génica , Mosquitos Vectores/genética , Mosquitos Vectores/metabolismo , Reproducción/genética , Sitios de Unión , Ecdisterona/metabolismo , Genes Reporteros , Especificidad de Órganos , Regiones Promotoras Genéticas , Unión Proteica , Receptores de Esteroides/metabolismo , Factores de Transcripción/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34266957

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that play critical roles in controlling posttranscriptional gene regulation and have a profound effect on mosquito reproduction and metabolism. Juvenile hormone (JH) is critical for achieving reproductive competence in the main vector of human arboviral diseases, Aedes aegypti We report a JH-mediated mechanism governing miRNA expression. Using a transcription factor screen with multiple primary miRNA (pri-miRNA) promoters, we identified that the Ecdysone-induced protein E75 (E75) isoform (E75-RD) induced miRNA gene promoter activity. E75 binding sites were determined in miRNA promoters by means of cell transfection assay. E75-RD was found to be up-regulated by JH, as shown by the JH application and RNA interference (RNAi) of the JH receptor Methoprene-tolerant (Met). Small RNA sequencing from RNAi of Met and E75 displayed an overlapping miRNA cohort, suggesting E75 to be an intermediate component within the JH hierarchical network controlling miRNAs. Further experiments confirmed that E75-RD positively regulates several miRNAs including miR-2940. Reducing miR-2940 resulted in the arrest of follicle development and number of eggs laid. Performing miRNA target predictions and RT-qPCR from antagomir Ant-2940-3p-treated fat body tissues identified the mRNA target Clumsy (AAEL002518) The molecular interaction between this gene target and miR-2940 was confirmed using an in vitro dual luciferase assay in Drosophila S2 cells and in Ae. aegypti Aag2 cell lines. Finally, we performed a phenotypic rescue experiment to demonstrate that miR-2940/Clumsy is responsible for the disruption in egg development. Collectively, these results established the role of JH-mediated E75-RD in regulation of miRNA gene expression during the mosquito reproductive cycle.


Asunto(s)
Aedes/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Insectos/metabolismo , Hormonas Juveniles/metabolismo , MicroARNs/genética , Mosquitos Vectores/metabolismo , Aedes/genética , Aedes/crecimiento & desarrollo , Animales , Proteínas de Unión al ADN/genética , Dengue/transmisión , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas de Insectos/genética , Masculino , MicroARNs/metabolismo , Mosquitos Vectores/genética , Mosquitos Vectores/crecimiento & desarrollo , Óvulo/crecimiento & desarrollo , Óvulo/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34155112

RESUMEN

Female mosquitoes transmit numerous devastating human diseases because they require vertebrate blood meal for egg development. MicroRNAs (miRNAs) play critical roles across multiple reproductive processes in female Aedes aegypti mosquitoes. However, how miRNAs are controlled to coordinate their activity with the demands of mosquito reproduction remains largely unknown. We report that the ecdysone receptor (EcR)-mediated 20-hydroxyecdysone (20E) signaling regulates miRNA expression in female mosquitoes. EcR RNA-interference silencing linked to small RNA-sequencing analysis reveals that EcR not only activates but also represses miRNA expression in the female mosquito fat body, a functional analog of the vertebrate liver. EcR directly represses the expression of clustered miR-275 and miR-305 before blood feeding when the 20E titer is low, whereas it activates their expression in response to the increased 20E titer after a blood meal. Furthermore, we find that SMRTER, an insect analog of the vertebrate nuclear receptor corepressors SMRT and N-CoR, interacts with EcR in a 20E-sensitive manner and is required for EcR-mediated repression of miRNA expression in Ae. aegypti mosquitoes. In addition, we demonstrate that miR-275 and miR-305 directly target glutamate semialdehyde dehydrogenase and AAEL009899, respectively, to facilitate egg development. This study reveals a mechanism for how miRNAs are controlled by the 20E signaling pathway to coordinate their activity with the demands of mosquito reproduction.


Asunto(s)
Aedes/genética , Dengue/parasitología , Ecdisterona/farmacología , MicroARNs/genética , Mosquitos Vectores/genética , Receptores de Esteroides/metabolismo , Aedes/efectos de los fármacos , Animales , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Cuerpo Adiposo/efectos de los fármacos , Cuerpo Adiposo/metabolismo , Conducta Alimentaria/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Histona Desacetilasas/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , MicroARNs/metabolismo , Mosquitos Vectores/efectos de los fármacos , Sistemas de Lectura Abierta/genética , Óvulo/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética/efectos de los fármacos , Transcriptoma/genética
9.
Insect Biochem Mol Biol ; 134: 103580, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33901693

RESUMEN

Anautogenous female mosquitoes obtain the nutrients needed for egg development from vertebrate blood, and consequently they transmit numerous pathogens of devastating human diseases. Digestion of blood proteins into amino acids that are used for energy production, egg maturation and replenishment of maternal reserves is an essential part of the female mosquito reproductive cycle. However, the regulatory mechanisms underlying this process remain largely unknown. Here, we report that the transcription factor E93 is a critical factor promoting blood meal digestion in adult females of the major arboviral vector Aedes aegypti in response to the steroid hormone 20-hydroxyecdysone (20E). E93 was upregulated in the female mosquito midgut after a blood meal, and RNA interference (RNAi)-mediated knockdown of E93 inhibited midgut blood digestion. E93 RNAi depletion repressed late trypsin (LT), serine protease I (SPI), SPVI and SPVII, and activated early trypsin (ET) expression in the female mosquito midgut after a blood meal. Injection of 20E activated E93, LT, SPI, SPVI and SPVII, and repressed ET expression, whereas RNAi knockdown of the ecdysone receptor (EcR) repressed E93, LT, SPI, SPVI and SPVII, and activated ET expression in the midgut. Furthermore, E93 depletion resulted in a complete loss of 20E responsiveness of LT, SPVI and SPVII. Our findings reveal important mechanisms regulating blood meal digestion in disease-transmitting mosquitoes.


Asunto(s)
Aedes , Sangre/metabolismo , Sistema Digestivo/metabolismo , Factores de Transcripción/genética , Aedes/genética , Aedes/metabolismo , Aedes/fisiología , Alimentación Animal , Animales , Proteínas Sanguíneas/metabolismo , Digestión , Proteínas de Drosophila/genética , Ecdisterona/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas de Insectos/metabolismo , Mosquitos Vectores/genética , Mosquitos Vectores/metabolismo , Mosquitos Vectores/fisiología , Interferencia de ARN , Serina Proteasas/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593917

RESUMEN

Repeated blood feedings are required for adult female mosquitoes to maintain their gonadotrophic cycles, enabling them to be important pathogen carriers of human diseases. Elucidating the molecular mechanism underlying developmental switches between these mosquito gonadotrophic cycles will provide valuable insight into mosquito reproduction and could aid in the identification of targets to disrupt these cycles, thereby reducing disease transmission. We report here that the transcription factor ecdysone-induced protein 93 (E93), previously implicated in insect metamorphic transitions, plays a key role in determining the gonadotrophic cyclicity in adult females of the major arboviral vector Aedes aegypti Expression of the E93 gene in mosquitoes is down-regulated by juvenile hormone (JH) and up-regulated by 20-hydroxyecdysone (20E). We find that E93 controls Hormone Receptor 3 (HR3), the transcription factor linked to the termination of reproductive cycles. Moreover, knockdown of E93 expression via RNAi impaired fat body autophagy, suggesting that E93 governs autophagy-induced termination of vitellogenesis. E93 RNAi silencing prior to the first gonadotrophic cycle affected normal progression of the second cycle. Finally, transcriptomic analysis showed a considerable E93-dependent decline in the expression of genes involved in translation and metabolism at the end of a reproductive cycle. In conclusion, our data demonstrate that E93 acts as a crucial factor in regulating reproductive cycle switches in adult female mosquitoes.


Asunto(s)
Aedes/metabolismo , Ecdisona/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Gonadotrofos/metabolismo , Proteínas de Insectos/metabolismo , Metamorfosis Biológica , Vitelogénesis , Aedes/genética , Aedes/crecimiento & desarrollo , Animales , Femenino , Proteínas de Insectos/genética
11.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526700

RESUMEN

Female mosquitoes feed sequentially on carbohydrates (nectar) and proteins (blood) during each gonadotrophic cycle to become reproductively competent and effective disease vectors. Accordingly, metabolism is synchronized to support this reproductive cyclicity. However, regulatory pathways linking metabolism to reproductive cycles are not fully understood. Two key hormones, juvenile hormone (JH) and ecdysteroids (20-hydroxyecdysone, 20E, is the most active form) govern female mosquito reproduction. Aedes aegypti genome codes for eight insulin-like peptides (ILPs) that are critical for controlling metabolism. We examined the effects of the JH and 20E pathways on mosquito ILP expression to decipher regulation of metabolism in a reproducing female mosquito. Chromatin immunoprecipitation assays showed genomic interactions between ilp genes and the JH receptor, methoprene-tolerant, a transcription factor, Krüppel homolog 1 (Kr-h1), and two isoforms of the ecdysone response early gene, E74. The luciferase reporter assays showed that Kr-h1 activates ilps 2, 6, and 7, but represses ilps 4 and 5 The 20E pathway displayed the opposite effect in the regulation of ilps E74B repressed ilps 2 and 6, while E74A activated ilps 4 and 5 Combining RNA interference, CRISPR gene tagging and enzyme-linked immunosorbent assay, we have shown that the JH and 20E regulate protein levels of all eight Ae. aegypti ILPs. Thus, we have established a regulatory axis between ILPs, JH, and 20E in coordination of metabolism during gonadotrophic cycles of Ae. aegypti.


Asunto(s)
Aedes/metabolismo , Ecdisterona/metabolismo , Hormonas Juveniles/metabolismo , Reproducción/genética , Aedes/genética , Aedes/fisiología , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Proteínas de Insectos/genética , Insulina/genética , Insulina/metabolismo , Mosquitos Vectores/genética , Mosquitos Vectores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Insect Biochem Mol Biol ; 128: 103509, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33264664

RESUMEN

The trade-off between reproduction and immunity has been established for a number of insect species. However, the regulatory mechanisms governing this event is not well understood. In the mosquito Aedes aegypti, the vector of dangerous human arboviral diseases, juvenile hormone (JH) is required for the female post-eclosion development and reproductive maturation. In this study, we have revealed the JH negative effect on the expression of immunity-related genes, such as antimicrobial peptides (AMPs), during the post-eclosion phase of the female mosquito gonadotrophic reproductive cycle. Mosquitoes treated with JH became more sensitive to microbial infection. Mosquitoes subjected to the RNA interference knockdown (RNAi) of the JH receptor, Methoprene-tolerant (Met), showed increased expression of several AMP genes. Met binds to the E-box-like recognition motifs in the regulatory region of the diptericin (Dpt) gene, indicating that JH can suppress the Dpt gene expression through its receptor Met. Hence, JH is involved in the modulation of immune responses during the post-eclosion phase of reproduction. The RNAi knockdown of the peptidoglycan recognition protein (PGRP-LC) led to a significant reduction of the Dpt transcript level, indicating the PGRP-LC activating role on this AMP gene. Thus, Dpt appeared to be under the dual regulation of both the JH and the immune deficiency (IMD) signaling pathways. Our study provides a better understanding of how JH regulates insect immunity in adult mosquitoes.


Asunto(s)
Aedes , Hormonas Juveniles , Proteínas Citotóxicas Formadoras de Poros , Aedes/efectos de los fármacos , Aedes/genética , Aedes/inmunología , Aedes/metabolismo , Animales , Proteínas Portadoras/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/metabolismo , Hormonas Juveniles/metabolismo , Hormonas Juveniles/farmacología , Metopreno/metabolismo , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Mosquitos Vectores/inmunología , Mosquitos Vectores/metabolismo , Proteínas Citotóxicas Formadoras de Poros/inmunología , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Interferencia de ARN
13.
RNA Biol ; 18(11): 1682-1691, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33317406

RESUMEN

The yellow fever mosquito Aedes aegypti is an obligatory blood feeder and a major arboviral disease vector, evoking severe public health concerns worldwide. In adult female mosquitoes, the gut is critical for blood digestion and pathogen entry. We aimed for a systematic exploration of microRNA expression dynamics in the gut during the gonadotrophic cycle. Small RNA libraries were constructed from female mosquito gut tissues at five time points. Unsupervised hierarchical clustering revealed three expression clusters (early, mid and late) peaking at sequential time points - 24, 48 and 72 h posteclosion. Differentially expressed miRNAs were identified at 24 h post-blood meal (PBM). Depletions of Methoprene-tolerant [Met; the juvenile hormone (JH) receptor] and Ecdysone receptor [EcR; the receptor to 20-hydroxyecdysone (20E)] were performed using dsRNA to these genes to investigate impacts on microRNA expressions. Our results suggest that Met-mediated signalling downregulates miRNA expression from the early cluster and upregulates that from the late cluster. EcR signalling either up- or downregulated miRNA levels at 24 h PBM, indicating a differential effect of this receptor in miRNA gene expression. Furthermore, miR-281, which is the most abundant miRNA in the gut tissue, is induced and repressed by Met- and EcR-mediated signalling, respectively. Systematic depletion using synthetic antagomir and phenotype examinations indicate that miR-281 is obligatory for the normal progression of blood digestion, ovarian development and reproduction. Collectively, this study unveils expression dynamics of microRNAs in the female gut tissue during the gonadotrophic cycle and demonstrates that they are affected by JH and 20E signalling.


Asunto(s)
Pollos/metabolismo , Tracto Gastrointestinal/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Insectos/metabolismo , Hormonas Juveniles/farmacología , MicroARNs/metabolismo , Fiebre Amarilla/genética , Aedes/fisiología , Animales , Pollos/parasitología , Femenino , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/parasitología , Proteínas de Insectos/genética , MicroARNs/genética , Mosquitos Vectores , Fiebre Amarilla/parasitología
14.
PLoS Genet ; 15(10): e1008443, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31661489

RESUMEN

Arthropod-specific juvenile hormones control numerous essential functions in development and reproduction. In the dengue-fever mosquito Aedes aegypti, in addition to its role in immature stages, juvenile hormone III (JH) governs post-eclosion (PE) development in adult females, a phase required for competence acquisition for blood feeding and subsequent egg maturation. During PE, JH through its receptor Methoprene-tolerant (Met) regulate the expression of many genes, causing either activation or repression. Met-mediated gene repression is indirect, requiring involvement of intermediate repressors. Hairy, which functions downstream of Met in the JH gene-repression hierarchy, is one such factor. Krüppel-homolog 1, a zinc-finger transcriptional factor, is directly regulated by Met and has been implicated in both activation and repression of JH-regulated genes. However, the interaction between Hairy and Kr-h1 in the JH-repression hierarchy is not well understood. Our RNAseq-based transcriptomic analysis of the Kr-h1-depleted mosquito fat body revealed that 92% of Kr-h1 repressed genes are also repressed by Met, supporting the existence of a hierarchy between Met and Kr-h1 as previously demonstrated in various insects. Notably, 130 genes are co-repressed by both Kr-h1 and Hairy, indicating regulatory complexity of the JH-mediated PE gene repression. A mosquito Kr-h1 binding site in genes co-regulated by this factor and Hairy was identified computationally. Moreover, this was validated using electrophoretic mobility shift assays. A complete phenocopy of the effect of Met RNAi depletion on target genes could only be observed after Kr-h1 and Hairy double RNAi knockdown, suggesting a synergistic action between these two factors in target gene repression. This was confirmed using a cell-culture-based luciferase reporter assay. Taken together, our results indicate that Hairy and Kr-h1 not only function as intermediate downstream factors, but also act together in a synergistic fashion in the JH/Met gene repression hierarchy.


Asunto(s)
Aedes/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/metabolismo , Hormonas Juveniles/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Represoras/metabolismo , Aedes/crecimiento & desarrollo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cuerpo Adiposo/metabolismo , Femenino , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Insectos/genética , Factores de Transcripción de Tipo Kruppel/genética , Interferencia de ARN , RNA-Seq , Proteínas Represoras/genética
15.
Proc Natl Acad Sci U S A ; 115(42): E9822-E9831, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30275337

RESUMEN

Disease-transmitting female mosquitoes require a vertebrate blood meal to produce their eggs. An obligatory hematophagous lifestyle, rapid reproduction, and existence of a large number of transmittable diseases make mosquitoes the world's deadliest animals. Attaining optimal body size and nutritional status is critical for mosquitoes to become reproductively competent and effective disease vectors. We report that blood feeding boosts serotonin concentration and elevates the serotonin receptor Aa5HT2B (Aedes aegypti 5-hydroxytryptamine receptor, type 2B) transcript level in the fat-body, an insect analog of the vertebrate liver and adipose tissue. Aa5HT2B gene disruption using the CRISPR-Cas9 gene-editing approach led to a decreased body size, postponed development, shortened lifespan, retarded ovarian growth, and dramatically diminished lipid accumulation. Expression of the insulin-like peptide (ILP) genes ilp2 and ilp6 was down-regulated while that of ilp5 and ilp4 was up-regulated in response to Aa5HT2B disruption. CRISPR-Cas9 disruption of ilp2 or ilp6 resulted in adverse phenotypes similar to those of Aa5HT2B disruption, while ilp5 CRISPR-Cas9 disruption had exactly the opposite effect on growth and metabolism, with significantly increased body size and elevated lipid stores. Simultaneous CRISPR-Cas9 disruption of Aa5HT2B and ilp5 rescued these phenotypic manifestations. Aa5HT2B RNAi silencing rendered ilp6 insensitive to serotonin treatment in the cultured fat-body, suggesting a regulatory link between Aa5HT2B and ILP6. Moreover, CRISPR-Cas9 ilp6 disruption affects expression of ilp-2, -5, and -4, pointing out on a possible role of ILP6 as a mediator of the Aa5HT2B action.


Asunto(s)
Aedes/fisiología , Proteínas de Insectos/metabolismo , Insulina/metabolismo , Mosquitos Vectores/fisiología , Fragmentos de Péptidos/metabolismo , Receptores de Serotonina/metabolismo , Reproducción , Serotonina/metabolismo , Animales , Sistemas CRISPR-Cas , Femenino , Receptores de Serotonina/química , Receptores de Serotonina/genética , Transducción de Señal
16.
Insect Biochem Mol Biol ; 96: 19-26, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29526770

RESUMEN

The Aedes aegypti mosquito is the principal vector for many dangerous human viral diseases. Carbohydrate metabolism (CM) is essential for supplying the energy necessary for host seeking, blood digestion and rapid egg development of this vector insect. The steroid hormone 20-hydroxyecdysone (20E) and the ecdysone receptor (EcR) are important regulators of CM, coordinating it with female reproductive events. We report here that the NR4A nuclear receptor AHR38 plays a critical role in mediating these actions of 20E and EcR. AHR38 RNA interference (RNAi) depletion in female mosquitoes blocked the transcriptional activation of CM genes encoding phosphoglucomutase (PGM) and trehalose-6-phophate synthase (TPS); it caused an increase of glycogen accumulation and a decrease of the circulating sugar trehalose. This treatment also resulted in a dramatic reduction in fecundity. Considering that these phenotypes resulting from AHR38 RNAi depletion are similar to those of EcR RNAi, we investigated a possible connection between these transcription factors in CM regulation. EcR RNAi inhibits the AHR38 gene expression. Moreover, the 20E-induced EcR complex directly activates AHR38 by binding to the ecdysone response element (EcRE) in the upstream regulatory region of this gene. The present work has implicated AHR38 in the 20E-mediated control of CM and provided new insight into mechanisms of 20E regulation of metabolism during female mosquito reproduction.


Asunto(s)
Aedes/metabolismo , Metabolismo de los Hidratos de Carbono/fisiología , Ecdisterona/metabolismo , Proteínas de Insectos/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Aedes/genética , Animales , Ecdisterona/genética , Femenino , Proteínas de Insectos/genética , Masculino , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Reproducción/fisiología
17.
Annu Rev Entomol ; 63: 489-511, 2018 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-29058980

RESUMEN

The synthesis of vitellogenin and its uptake by maturing oocytes during egg maturation are essential for successful female reproduction. These events are regulated by the juvenile hormones and ecdysteroids and by the nutritional signaling pathway regulated by neuropeptides. Juvenile hormones act as gonadotropins, regulating vitellogenesis in most insects, but ecdysteroids control this process in Diptera and some Hymenoptera and Lepidoptera. The complex crosstalk between the juvenile hormones, ecdysteroids, and nutritional signaling pathways differs distinctly depending on the reproductive strategies adopted by various insects. Molecular studies within the past decade have revealed much about the relationships among, and the role of, these pathways with respect to regulation of insect reproduction. Here, we review the role of juvenile hormones, ecdysteroids, and nutritional signaling, along with that of microRNAs, in regulating female insect reproduction at the molecular level.


Asunto(s)
Ecdisteroides/metabolismo , Insectos/fisiología , Hormonas Juveniles/metabolismo , Oviparidad , Vitelogénesis , Aminoácidos/metabolismo , Animales , Insulina/metabolismo , MicroARNs/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
18.
ISME J ; 12(1): 277-288, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29099491

RESUMEN

A host's immune system plays a central role in shaping the composition of the microbiota and, in return, resident microbes influence immune responses. Symbiotic associations of the maternally transmitted bacterium Wolbachia occur with a wide range of arthropods. It is, however, absent from the dengue and Zika vector mosquito Aedes aegypti in nature. When Wolbachia is artificially forced to form symbiosis with this new mosquito host, it boosts the basal immune response and enhances the mosquito's resistance to pathogens, including dengue, Zika virus and malaria parasites. The mechanisms involved in establishing a symbiotic relationship between Wolbachia and A. aegypti, and the long-term outcomes of this interaction, are not well understood. Here, we have demonstrated that both the immune deficiency (IMD) and Toll pathways are activated by the Wolbachia strain wAlbB upon its introduction into A. aegypti. Silencing the Toll and IMD pathways via RNA interference reduces the wAlbB load. Notably, wAlbB induces peptidoglycan recognition protein (PGRP)-LE expression in the carcass of A. aegypti, and its silencing results in a reduction of symbiont load. Using transgenic mosquitoes with stage-specific induction of the IMD and Toll pathways, we have shown that elevated wAlbB infection in these mosquitoes is maintained via maternal transmission. These results indicate that host innate immunity is utilized to establish and promote host-microbial symbiosis. Our results will facilitate a long-term projection of the stability of the Wolbachia-A. aegypti mosquito system that is being developed to control dengue and Zika virus transmission to humans.


Asunto(s)
Aedes/microbiología , Inmunidad Innata , Mosquitos Vectores/microbiología , Simbiosis/fisiología , Wolbachia/fisiología , Aedes/inmunología , Animales , Mosquitos Vectores/inmunología , Receptores Toll-Like/metabolismo
19.
Proc Natl Acad Sci U S A ; 114(38): E8017-E8024, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28874536

RESUMEN

Hematophagous female mosquitoes transmit numerous devastating human diseases, including malaria, dengue fever, Zika virus, and others. Because of their obligatory requirement of a vertebrate blood meal for reproduction, these mosquitoes need a lot of energy; therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. Lipids are the major energy store providing the fuel required for host seeking and reproduction. They are essential components of the fat body, a metabolic tissue that is the insect analog of vertebrate liver and adipose tissue. In this study, we found that microRNA-277 (miR-277) plays an important role in regulating mosquito lipid metabolism. The genetic disruption of miR-277 using the CRISPR-Cas9 system led to failures in both lipid storage and ovary development. miR-277 mimic injection partially rescued these phenotypic manifestations. Examination of subcellular localization of FOXO protein via CRISPR-assisted, single-stranded oligodeoxynucleotide-mediated homology-directed repair revealed that insulin signaling is up-regulated in response to miR-277 depletion. In silico target prediction identified that insulin-like peptides 7 and 8 (ilp7 and ilp8) are putative targets of miR-277; RNA immunoprecipitation and a luciferase reporter assay confirmed that ilp7 and ilp8 are direct targets of this miRNA. CRISPR-Cas9 depletion of ilp7 and ilp8 led to metabolic and reproductive defects. These depletions identified differential actions of ILP7 and ILP8 in lipid homeostasis and ovarian development. Thus, miR-277 plays a critical role in mosquito lipid metabolism and reproduction by targeting ilp7 and ilp8, and serves as a monitor to control ILP7 and ILP8 mRNA levels.


Asunto(s)
Aedes/metabolismo , Proteínas de Insectos/biosíntesis , Metabolismo de los Lípidos/fisiología , MicroARNs/metabolismo , Neuropéptidos/biosíntesis , Aedes/genética , Animales , Femenino , Proteínas de Insectos/genética , Masculino , MicroARNs/genética , Neuropéptidos/genética , Reproducción/fisiología
20.
PLoS Genet ; 13(8): e1006943, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28787446

RESUMEN

The yellow fever mosquito Aedes aegypti is the major vector of arboviruses, causing numerous devastating human diseases, such as dengue and yellow fevers, Chikungunya and Zika. Female mosquitoes need vertebrate blood for egg development, and repeated cycles of blood feeding are tightly linked to pathogen transmission. The mosquito's posterior midgut (gut) is involved in blood digestion and also serves as an entry point for pathogens. Thus, the mosquito gut is an important tissue to investigate. The miRNA aae-miR-275 (miR-275) has been shown to be required for normal blood digestion in the female mosquito; however, the mechanism of its action has remained unknown. Here, we demonstrate that miR-275 directly targets and positively regulates sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase, which is implicated in active transport of Ca2+ from the cytosol to the sarco/endoplasmic reticulum. We utilized a combination of the gut-specific yeast transcription activator protein Gal4/upstream activating sequence (Gal4/UAS) system and miRNA Tough Decoy technology to deplete the endogenous level of miR-275 in guts of transgenic mosquitoes. This gut-specific reduction of miR-275 post blood meal decreased SERCA mRNA and protein levels of the digestive enzyme late trypsin. It also resulted in a significant reduction of gut microbiota. Moreover, the decrease of miR-275 and SERCA correlated with defects in the Notch signaling pathway and assembly of the gut actin cytoskeleton. The adverse phenotypes caused by miR-275 silencing were rescued by injections of miR-275 mimic. Thus, we have discovered that miR-275 directly targets SERCA, and the maintenance of its level is critical for multiple gut functions in mosquitoes.


Asunto(s)
Aedes/genética , Retículo Endoplásmico/metabolismo , Proteínas de Insectos/metabolismo , MicroARNs/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Aedes/metabolismo , Animales , Calcio/metabolismo , Femenino , Tracto Gastrointestinal/metabolismo , Silenciador del Gen , Proteínas de Insectos/genética , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...